
GigE Vision Reference Design

for Transmitter Devices

Document Revision X-1.1.2, 2012-11-30

Sensor to Image GmbH
Lechtorstr. 20
D-86956 Schongau
Germany
http://www.sensor-to-image.de

http://www.sensor-to-image.de/

Contents

Terms and Abbreviations...3

Overview..4
Structure of the Design..4
Basic Operation..5
Delivered Archive...5

Hardware...6
Main Board...6

Connectors...7

Expansion Board..8
FPGA..8

Firmware..10
SDK...10

Hardware Platform Specification...10
Boards Support Package..10
Application...10

Makefile..11
Command Shell Environment and GNU Make..11
Makefile Targets..11

Bootloader...11
Commands...12
Boot Flash Memory...14
Parameters EEPROM...17

Standalone Operation..17
User Application and GigE Library...18
GigE Vision Registers..19

Remote Access to the SPI Flash Memory..19
Remote Access to the Configuration EEPROM...20

Video Processor..21
CPU Interface...22

GCSR Register Bits...23
Padding Register Bits...23

Revision History..24

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 2 of 24

Terms and Abbreviations

AOI Area of Interest.

DDR Double Data Rate interface. Signals of this interface might change its state on both
rising and falling edges of a clock.

EPC External Peripheral Controller core from Xilinx Platform Studio. It provides
synchronous interface to connect custom peripherals to the CPU system bus.

GVCP GigE Vision Control Protocol. See the GigE Vision Specification for details.

GVSP GigE Vision Streaming Protocol. See the GigE Vision Specification for details.

MPMC Multi Port Memory Controller core from Xilinx Platform Studio. It provides access
to different types of memory through several ports.

SDR Single Data Rate interface. Signals of this interface may change its state either on
rising or on falling edge of a clock but not on both.

SDRAM In this document it always means SDR Synchronous Dynamic RAM unless there is
explicitly stated DDR or DDR2.

XST Xilinx Synthesis Technology. The FPGA synthesis tool provided by Xilinx, Inc.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 3 of 24

Overview

The GigE Vision Camera Reference Design is the official system for evaluation of the GigE IP
core for transmitters and its companion cores named MPMC-Framebuffer core and Ethernet
MAC core. The camera reference design is based on the CANCam-GigE/S3r2 main board and
the CANCam-GigE Camera+CCD expansion board. In addition several Xilinx evaluation
boards like the SP605 can be used. The design is done in Xilinx ISE version 13.4 and EDK
version 13.4 and will be updated periodically.

Structure of the Design

The top level VHDL source file gvrd.vhd instantiates all the modules required to form fully
functional GigE Vision camera. The design consists of following modules:
 Processor system cpu.xmp. This is an EDK generated processor system based on MicroBlaze

CPU and PLB peripherals for interfacing the CPU to an external code memory and the rest
of the reference design. It instantiates also Xilinx Multiport Memory Controller (MPMC),
which provides access to external memory both from cpu and framebuffer core side.
The reset generator forms global synchronous system reset based on external reset input and
DCM locked status. The clock generator is based on the DCM. It generates system clock
and sensor clock from external clock. Please check comments of reference design for exact
frequencies.

 Video processor module video.vhd. This modules provides set of basic registers required for
a GigE Vision camera. Additionally it converts video data stream from the image sensor to
the format required by the memory controller. Reference designs for Xilinx evalboards may
run without imager. Then this module is a simple image generator.

 GigE framebuffer controller framebuf.ngc. This module operates as a special video frame-
buffer which forms data packets for the GigE core. It handles half of the packet resend

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 4 of 24

Figure 1: Block diagram of the camera reference design

MPMC
Framebuffer

Controller

framebuf.ngc

FPGA (gvrd.vhd)

Gigabit
Ethernet MAC

mac.vhd

Video
Processor

video.vhd

MicroBlaze
CPU System

cpu.xmp

image
sensor

gmii
phy

GigE
Core

gige.ngc

spi flash i2c eeprom
SHA1 dongle

sdram

feature of the GigE Vision streaming protocol. It uses Xilinx MPMC core as memory
controller, which is part of the processor system cpu.xmp. Note that physical memory is
shared between µBlaze and framebuffer.

 GigE core gige.ngc. This module handles all the low-level networking features to the rest of
the system. It forms the GigE Vision stream channel and provides networking interface for
the CPU system. Additionally it handles half of the packet resend feature.

 Gigabit Ethernet MAC mac.vhd. This is just VHDL wrapper for the NGC netlist of a Gigabit
MAC core or a hard macro if available (e.g. in Virtex devices).

Basic Operation
The reference design forms a basic GigE Vision camera. The streaming channel is handled
completely in hardware and therefore it is capable to reach maximum data throughput of the
Gigabit Ethernet network. The control protocol together with supporting features are handled by
the MicroBlaze CPU in software. Basic video processing features are handled partially in
hardware and partially directly by the image sensor.

Delivered Archive
The reference design is delivered as an archive containing the ISE project and corresponding
firmware. Structure of the archive is following:
./cores

Directory containing the IP cores. It should contain gige.ngc, framebuffer.ngc and
mac.ngc if no hard mac is used.

./cpu
The Xilinx MicroBlaze based CPU system used in the ISE project is placed into
that directory.

./ise
Directory containing the Xilinx ISE project of the reference design, but not the
vhdl source files

./sdk
This directory contains Xilinx SDK workspace with hardware specification, board
support package and firmware project. It also includs source code of the firmware,
static GigE library, binary file of the bootloader, and support files like Makefile,
linker scripts and so on.

./src
Directory containing the Xilinx ISE project source files of the reference design,
usually vhd and ucf files.

In following text, the root of the extracted archive will be always indicated as . (dot).

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 5 of 24

Hardware

When no Xilinx evaluation board is used, the reference design is based on the CANCam-
GigE/S3r2 Main Board and the CANCam-GigE Camera+CCD expansion board. Basic
characteristics of the reference design hardware are summarized in Table 1.

Parameter Value Units
Main board dimensions 69.85 × 50.8 mm
Expansion board dimensions 50.8 × 50.8 mm
Common supply voltage 8 – 12 V DC
Total power consumption 2.75 W
Ethernet interface 1000BASE-T
Resolution of the image sensor 752 × 480 pixels
Color mode of the image sensor Gray scale

Table 1: Basic parameters of the reference design hardware

Main Board
The main board is standard product for interfacing any data source to the Gigabit Ethernet
network. The board is assembled with following components:
 Power supply
 Two buffered LVCMOS inputs and two buffered LVCMOS outputs
 Pin header connectors for expansion board directly connected to 55 FPGA I/O pins
 JTAG connector
 RS-232 interface
 CAN interface
 8 kB EEPROM for non-volatile storage of GigE parameters
 8 MB SPI flash memory for FPGA configuration and CPU firmware
 32 MB SDRAM with 32 bit data bus for video frame-buffer and CPU program memory
 Gigabit Ethernet PHY BCM5461 with RJ45 connector
 Xilinx Spartan-3ADSP FPGA XC3SD1800A-CSG484

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 6 of 24

Connectors
Top-view layout of the main board showing position and orientation of the connectors is shown
in Figure 2. (J6 is usually not assembled)

Position of the pin number 1 is always emphasized using a square shape in Figure 2. Numbering
schema of the connector pins for top-view is described by Table 2.

2 4 6 ... N
1 3 5 ... N-1

Table 2: Numbering of the connector pins

The main board contains four pin header connectors. They are J1 and J2 for connecting an
expansion board, J3 for power supply and general purpose I/Os, and J4 for JTAG connection to
the FPGA.
Connection of the J3 connector is shown in Table 3. The J3 should remain unconnected in the
reference design as there are power supply and RS232 connectors at the expansion board.

Signal Pin Number Signal
GND 1 2 Power supply input
LVCMOS input 1 3 4 LVCMOS input 2
Main board RS232 RXD 5 6 LVCMOS output 1
Main board RS232 TXD 7 8 LVCMOS output 2
Do not connect 9 10 Do not connect

Table 3: Pinning of the J3 connector

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 7 of 24

Figure 2: Layout of the main board

J5

J1

J2J3

J4

69.85 mm

50
.8

 m
m

1

2

39

40

1

2

35

36

1 2

9 10

17

J6

1

Connection of the JTAG connector J4 is shown in Table 4. Pin 6 is active-low input signal.

Pin Number Signal
1 +3.3 V
2 JTAG TDI
3 JTAG TDO
4 JTAG TCK
5 JTAG TMS
6 Force FPGA reconfiguration
7 GND

Table 4: JTAG connector J4 pinning

Expansion Board
The expansion board was designed to present features of the main board and to allow simple
evaluation of the GigE core. The expansion board contains following components:
 DC power supply circular jack 2.1 mm
 9 pin d-sub connector for RS-232 interface
 Pin hole connectors to connect to the main board
 Flat ribbon cable connector to connect any Sensor to Image standard sensor board
 Aptina MT9V022 gray scale CMOS image sensor with resolution of 752×480 pixels

FPGA
The reference design itself is implemented in the Spartan-3ADSP FPGA. Block diagram is
shown in Figure 1. Detailed description of the IP cores delivered as NGC netlists can be found
in their respective documentation. The rest of the system is delivered as VHDL source codes to
show example how to use the cores to create working GigE Vision system.
The reference design consumes around 50% of the XC3SD1800 slice resources. Table 5 shows
precise numbers of device utilization. The values for the modules are estimated values coming
from synthesis, which may vary slightly after full implementation.

Module Slices Slice FF Slice LUTs RAMB16s DSP48As DCMs
GigE core - 3854 4823 15 0 0
Framebuffer
core - 6048 5814 4 1 0

1G MAC core - 647 986 0 0 0
CPU System - 3825 4716 13 3 2
Video processor
and top level - 410 384 1 0 2

Total after place
and route 13032 14163 14679 33 4 4

% of
XC3SD1800
resources

78% 42% 44% 39% 4% 50%

Table 5: Reference design FPGA resource utilization for XC3SD1800

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 8 of 24

Here the numbers for the design on SP605:

Module Slices Slice FF Slice LUTs RAMB16s DSP48A1s PLLs
GigE core - 3542 4088 15 0 0
Framebuffer
core - 5522 4849 4 1 0

1G MAC core - 695 731 0 0 0
CPU System - 3026 3807 12 3 1
Video processor
and top level - 383 675 1 0 0

Total after place
and route 4754 12491 11731 32 4 1

% of
XC6SLXT45T
resources

69% 22% 42% 27% 6% 25%

Table 6: Reference design FPGA resource utilization for XC6SLX45T

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 9 of 24

Firmware

The firmware is formed of C source code files and precompiled static library implementing all
the functionality required by the GigE Vision specification. Structure of the firmware directory
./sdk/ is following:
Makefile The makefile for the GNU make to control all build processes that create

binaries and bitstream required to run the reference design.

bin/ The bin directory is created during make process and contains executables of
the built application, bitstream created by merging current pure-hardware
bitstream together with a bootloader, and binary image of the configuration
EEPROM.

etc/ This directory contains supporting files like auxiliary Perl scripts, and GigE
Vision device configuration XML file.

gvrd_s3adsp/ This directory contains C source files of the reference design application.

gvrd_s3adsp_bsp/This directory contains board support package.

gvrd_s3adsp_hw/ This directory contains hardware description, which is used to generate
board support package.

lib/ The GigE library libgige.a and the bootloader executable file bootloader.elf
are placed into this directory.

src/ This directory contains C source files of the reference design application.

⚠ The Makefile can merge FPGA bitstream together with the bootloader and therefore it needs
the bitstream to exist in the ./ise directory!

SDK
Software development is done in the Eclipse based GUI called Xilinx Software Development
kit. Three different projects are needed:

Hardware Platform Specification
This is the description of the EDK hardware design in an xml file. Every time EDK project is
modified, the hardware design has to be exported to SDK, where it has to be imported in the
hardware platform specification project. Name of this project in reference design is
gvrd_s3adsp_hw or gvrd_sp605_hw for the SP605 reference design

Boards Support Package
Using the data of the hardware specification, this project defines the software layer for the final
application project. It created drivers for the used hardware components. Name of this project in
reference design is gvrd_s3adsp_bsp or gvrd_sp605_bsp for the SP605 reference design

Application
This project is the custom user application running on MicroBlaze. This projects refers to the

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 10 of 24

libraries created in the board support package and also refers to a static library, which provides
all gige vision related functions. Name of this project in reference design is gvrd_s3adsp or
gvrd_sp605 for the SP605 reference design. Result of compile is an elf file either in debug or
release mode, which is used by the makefile (see below) to create the application.bin file. Be
sure to reference correct output elf-file in makefile.

Makefile
Final build process of the application as well as merging FPGA bitstream with bootloader is
under control of the GNU make tool. Following section is for Windows users not familiar with
UNIX shell and make utility. Users running Xilinx development tools under Linux or Solaris
operating systems are usually used to use these tools.

Command Shell Environment and GNU Make
All the UNIX-like tools required for successful generation of the executable and bitstream are
part of the Xilinx development environment under Windows operating systems. To enter the
command line run the ISE Design Suite Command Prompt from the Accessories start menu or
out of SDK. Now at the command line change current working directory to the sdk workspace
directory. To change current working directory to <ref-design-path>\sdk on disk D: you must
type following command:
d:
cd <ref-design-path>\sdk
When you are in this firmware directory, you can control build process of the firmware issuing
following command:
make <target>
where the <target> is one of the Makefile targets described in following section.

Makefile Targets
The firmware Makefile offers following targets to control all required tasks of the build process:
all This target generates or refreshes all the output files. It calls subsequently makefile

targets eeprom, bit and bin.

bin Creates raw binary file application.bin from the ELF file(created in SDK) and
displays its length and checksum in hexadecimal.

bit Merges the gvrd.bit FPGA bitstream from the ISE project together with
lib/bootloader.elf creating bitstream.bit in the bin subdirectory. Then it converts
the BIT file to raw binary bitstream.bin and displays its length and checksum in
hex.

eeprom Generates binary image of the configuration EEPROM and displays its length and
checksum in hex. The image can be used to set default parameter values.

clean Deletes all generated files.

prog Programs bin/bitstream.bit into the FPGA using Xilinx Impact and JTAG cable.

run Envokes xmd debugger and downloads bin/application.elf to be executed by
µBlaze. Xilinx Impact and JTAG cable is used.

Bootloader
The bootloader is delivered as an ELF file together with the firmware. It is merged together with

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 11 of 24

the FPGA bitstream during build process and therefore it is available always whenever FPGA is
configured. Its basic function is to load the firmware from SPI flash into program memory and
start it. Additionally it allows to upload binary files from a PC using serial line and program
these files into the flash memory or parameters EEPROM.
The bootloader communicates with the PC using serial line set to following parameters:
 Speed: 115200 Bd
 Data bits: 8
 Parity: none
 Stop bits: 1
 Flow control: none
After successful configuration of the FPGA using JTAG or from SPI flash the bootloader
displays some version information and waits for 3 seconds printing out dots. When no key is
pressed during this period, the bootloader tries to load a firmware from flash and if it is
successful, it starts it.
When a key is pressed during the initial timeout period or when there is an error while loading
the firmware from flash, the bootloader enters its command line. User has a full access to all the
features of the bootloader from the command line.
The bootloader signalizes its current status using two general-purpose outputs. These can be
used by custom hardware. States of the bootloader are summarized in Table 7.

sys_gpo[1] sys_gpo[0] State
0 0 The bootloader is working
0 1 Boot failure, bootloader is entering command line
1 0 Bootloader is passing control over to the application
1 1 Undefined state

Table 7: Bootloader status

Commands
Command line mode of the bootloader allows user full control over the bootloader features. The
commands are entered pressing one key only. The command interpreter is case-insensitive. List
of available bootloader commands is shown in Table 8.

Key Command Description
U Upload Upload binary file using Xmodem protocol over a serial line to

the program memory
D Download1 Download content of the program memory using serial line
L Load Load data from flash into program memory
S Save Save data from program memory into flash
R Run Execute program from the program memory

Table 8: Bootloader commands

The Load and Save commands expect additional argument at the command line. These
additional arguments are listed in Table 9. The EEPROM command needs confirmation –
pressing the Y key as “yes” – before rewriting contents of the parameters EEPROM.

Key Command Description
B Bitstream The command operates with the FPGA bitstream
S Secondary Bitstream Load or save secondary (backup) FPGA bitstream

1 The Download command is disabled in current version of the bootloader.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 12 of 24

Key Command Description
X XML File Load or save an XML camera description file
A Application The command operates with the firmware application
E EEPROM Load or save contents of the parameters EEPROM

Table 9: Additional arguments of the Load and Save bootloader commands

The most important commands for system operation are Upload, Load, and Save.
Upload After issuing the upload command bootloader periodically tries to start the

Xmodem file transfer over a serial line. Whenever the sending side (a PC) starts
sending data, the bootloader stores it into the program memory. After end of the
transfer the bootloader prints out length of the received file and its checksum.
These values might be checked on a PC using the sdk/etc/cksum.pl Perl script.

Load This command expects one parameter and then it loads corresponding section of
the flash memory or EEPROM into the program memory and prints out its length
and checksum.

Save This command expects one parameter and according to it then stores the current
contents of the program memory into the flash memory or EEPROM.

Due to different implementations of XMODEM protocol in TeraTerm, only version 3.1 is
supported!

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 13 of 24

Boot Flash Memory
The bootloader uses an SPI flash memory for storage of the FPGA bitstreams, firmware, and
device description XML file. Default memory map for S3ADSP devices of the flash memory is
shown in Table 10, for SP605 in Table 11. Other reference designs on Xilinx eval boards may
have different layout.

0x7F FFFF

0x50 0000

Application 3 MB

0x4F FFFF

0x41 0000
XML File 960 kB

0x40 FFFF
0x40 0000 Allocation Table 64 kB
0x3F FFFF

0x20 0000

Reserved for secondary
Bitstream 2 MB

0x1F FFFF

0x00 0000

Bitstream 2 MB

Table 10: Flash memory map for S3ADSP board

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 14 of 24

For SP605 it looks like:

0x7F FFFF

0x40 0000

Application 4 MB

0x3F FFFF

0x30 0000
reserved 1 MB

0x2F FFFF

0x21 0000
XML File 960 kB

0x20 FFFF
0x20 0000 Allocation Table 64 kB
0x1F FFFF

0x00 0000

Bitstream
(No secondary

bitstream)
2 MB

Table 11: Flash memory map for S3ADSP board

There is no special filesystem implemented in the flash memory. Its structure is rather fixed to
keep the design simple. After power up the FPGA loads its configuration starting from address
zero which should be a bitstream. The secondary bitstream could be used as backup when there
would be a problem configuring the FPGA using the first bitstream (needs additional
configuration).

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 15 of 24

The allocation table contains information about data stored in each section. It holds the length of
the section in bytes and its checksum which is used during boot process to check data integrity.
Table 12 shows occupation of the allocation table. Start address of each entry is only offset to
absolute start address of table in flash.

0xFFFF
:

0x0030
Reserved

0x002C Application checksum
0x0028 Application length
0x0024 Reserved
0x0020 Reserved
0x001C XML file checksum
0x0018 XML file length
0x0014 Reserved
0x0010 Reserved
0x000C Secondary bitstream checksum
0x0008 Secondary bitstream length
0x0004 Bitstream checksum
0x0000 Bitstream length

Table 12: Layout of the flash memory allocation table

All values in the allocation table are 32 bit unsigned integer numbers. The length items mean
number of used bytes within a corresponding section. The checksums are calculated as 32 bit
sum of all used bytes of a section.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 16 of 24

Parameters EEPROM
The I2C EEPROM is used for non-volatile storage of constants and parameters required by the
GigE Vision device. Detailed description of the EEPROM operation including its memory map
can be found in the GigE Vision IP Specification.
There is a Perl script eeprom.pl in the fw/etc directory provided to allow user to prepare his own
default settings of the parameters stored in the EEPROM. This script expects several parameters
on its command line. These parameters are then used to assemble a binary image of the EPROM
contents. The script can be executed from command line calling xilperl etc/eeprom.pl
[optional_parameters] -x <xml-file> -o <output-file>. Table 13 shows command line options
of the eeprom.pl script.

Option Value Description
-m (--mac) hh:hh:hh:hh:hh:hh Ethernet MAC address of the device
-c (--ipcfg) d8 Enabled IP configuration methods, allowed values

are 1 for static, 2 for DHCP, 4 for LLA, and all their
“or” combinations

-i (--ip) d8.d8.d8.d8 Static IP address of the device
-n (--net) d8.d8.d8.d8 Static IP network mask
-g (--gw) d8.d8.d8.d8 Static IP default gateway
-p (--port) d16 GVCP port number
-u (--uname) text User defined name, maximum length is 15 characters
-d (--dest) d8.d8.d8.d8 Destination IP address for bidirectional version
-s (--stream) d16 GVSP port number for bidirectional version
-e (--serial) text Serial number/ID of the device
-t (--text) Force the script to generate C source file containing

initialized array instead of EEPROM binary image
-x (--xml) text Path to existing device description XML file
-a (--addr) hhhhhhhh Address of the XML file within the GigE Vision

register address space
-o (--output) text Name of the output C source or binary image file

Table 13: Command line options of the eeprom.pl script

The command line arguments are expected in form “option value”. The -x and -o options are
mandatory and must be always present. The other options are optional and predefined default
values will be used when options will be omitted.
The values in Table 13 use simple symbols to represent actual parameters. The h represents a
single hexadecimal digit, d8 means 8-bit unsigned decimal number, d16 stands for 16-bit
unsigned decimal number, and text means a text string. When it is necessary to use a whitespace
character within a text, enclose the whole text string into quotation marks.

Standalone Operation
To make the whole system run standalone, it is necessary to follow these steps:
 After any change in hardware generate up-to-date FPGA bitstream in Xilinx ISE. The ISE

project must be located in the ./ise directory and the bitstream must be named gvrd.bit.
(reference name could be changed in makefile)

 Generate the firmware application elf file in Xilinx SDK.
 Generate the firmware application binary and the FPGA bitstream merged with the

bootloader calling make all or simply make from the ./sdk directory. Generated files will be
placed into ./sdk/bin.

 Connect JTAG cable and power supply to the reference board and switch the supply on.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 17 of 24

 Start your favorite serial terminal program and setup its serial line parameters according to
the Bootloader section of this chapter.

 Configure the FPGA calling make prog or Xilinx Impact. In the serial terminal window press
any key after bootloader reports its version and starts printing dots.

 In bootloader press the U key to upload the bitstream binary file to the program memory.
The bootloader tries to start Xmodem file transfer now. Use a send file using Xmodem
protocol feature of you serial terminal program to send the ./sdk/bin/bitstream.bin file to the
device. After the end of file is detected, the bootloader reports size and checksum of the
received file. You can check it comparing with a result of the xilperl etc/cksum.pl -x
bin/bitstream.bin command.

 Now you can save the bitstream to the flash memory pressing the S key followed by the B
key what means “save bitstream”.

 Upload the application binary the same way as the bitstream. Press the U key to call the
upload command, send using Xmodem protocol the ./sdk/bin/application.bin and check its
length and checksum according to result of the cksum.pl script.

 Save the application into the flash pressing the S key followed by the A key what means
“save application”.

 Generate your default configuration EEPROM image calling xilperl etc/eeprom.pl [options]
-x etc/gvrd_v12.xml bin/eeprom.bin (executed by make eeprom).

 Upload the EEPROM image pressing the U key and sending the eeprom.bin file using
Xmodem protocol.

 Save the EEPROM contents pressing the S key followed by the E key what means “save
eeprom”. Be patient, programming whole EEPROM takes approximately 20 seconds.

 Upload the XML file using the U key and save it into flash memory using the S key followed
by the X key what stands for “save XML”.

 If everything passed smoothly, you can switch the power off and back on. You should see
the bootloader information in the serial terminal, then several dots while waiting for boot,
and finally it should report boot information and start the application.

User Application and GigE Library
The sample application is delivered as C source codes with the GigE static library. The sources
are placed in the sdk/gvrd_s3adsp/src directory. The user code is separated from the GigE
Vision related code. The user application does not need to deal with the GigE Vision protocol.
Instead it uses services of the GigE library. The library can be found in sdk/lib/libgige.a.
The GigE library handles all the networking functionality of the reference design except the
GigE Vision Streaming Protocol. The GigE static library has been compiled using MicroBlaze
GCC compiler which is part of Xilinx EDK.
Detailed description of the library can be found in the GigE Vision IP Specification.

⚠ When manually creating the application project, be sure to reference the libgige in linker
settings.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 18 of 24

GigE Vision Registers
From the perspective of the GigE Vision application, the control of the GigE Vision device is
done using set of registers. Table 14 shows the register address map as it is implemented in the
reference design.

0xFFFF FFFF

0xFF80 0000

Access to Boot
SPI Flash Memory 8 MB

0xFF7F FFFF

0xFF7F E000

Configuration
EEPROM 8 kB

0xFF7F DFFF

0x0000 A000

Reference Design
Control Registers 4087.953 MB

0x0000 9FFF

0x0000 0000

GigE Vision
Bootstrap Registers 40 kB

Table 14: GigE Vision control register address space

The GigE Vision register address space is separated into four regions. The GigE Vision
Bootstrap Registers region is specified in the GigE Vision Specification. See the specification
for detailed information. The address space starting at address 0x0000A000 is dedicated to
manufacturer-specific register space. This region is divided into three sub-regions in the
reference design. One part is related to the reference design control registers while the top of the
address space is dedicated to accessing the configuration EEPROM and boot SPI flash
memories. Address map of the reference design control registers is described in following
chapter.

Remote Access to the SPI Flash Memory
The reference design implements a way how to access the SPI flash memory remotely. This is
useful when it is necessary to update firmware of a device which is connected to a network but
is not directly reachable and therefore it is not possible to use bootloader as described above.
Remote access to the SPI flash memory is provided using last 8 MB of the GigE Vision
manufacturer-specific register address space.
Reading contents of the SPI flash memory is straightforward. The GigE Vision register address
is directly translated into SPI memory address and four bytes starting at this translated address
are read. The SPI address is

addr=reg−0xFF800000

where the reg is address of the GigE Vision register accessed by the GigE Vision application
running at a PC. This allows the GigE Vision application to access whole content of the SPI
configuration/boot flash memory.
Write access to the SPI flash memory is slightly more complicated than reading. There is no
straight way to implement direct random write access. Writing data into the flash is interfered
by 64 kB write buffer and an address register. See the address mapping in Table 15.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 19 of 24

0xFFFF FFFF

0xFF80 0000

Reserved
(write-protected) 8127.996 kB

0xFF81 0000 Write Address 4 B
0xFF80 FFFF

0xFF80 0000
Write Buffer 64 kB

Table 15: SPI flash memory write access registers

Write accesses to the SPI flash memory are organized in 64 kB blocks. To write a data block
into the flash memory, the application must fill the write buffer with 64 kB of data. If smaller
number of bytes than 64 kB is required to be written, the remaining space of the buffer should
be filled with 0xFF bytes. When the buffer is ready to be written, the application must write
starting SPI flash memory address into the write address register. The firmware then erases
64 kB block of the flash memory and programs it using data from the write buffer.
Closer description of the boot SPI flash memory can be found above in Bootloader section of
this chapter.

Remote Access to the Configuration EEPROM
The reference design allows the GigE Vision application to remotely update contents of the
configuration EEPROM. It is implemented using access to a dedicated address space region
from 0xFF7FE000 to 0xFF7FFFFF.
The EEPROM is accessed simply using read and write commands. The GigE Vision register
address is directly translated into EEPROM address and four bytes starting at this translated
address are read or written. The EEPROM address is

addr=reg−0xFF7FE000

where the reg is address of the GigE Vision register accessed by the GigE Vision application
running at a PC.
Access to the configuration EEPROM is not described in a device description XML file and
therefore it is hidden for any standard GigE Vision application. This feature is supported by
special software from Sensor to Image only.
The EEPROM image useful for the update is generated by the eeprom.pl script described above
in this chapter.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 20 of 24

Video Processor

The reference design comes with very simple video processor. It is the simplest image sensor
video input block which might be used as a base for customer video processor. Figure 3 shows
block diagram of the video processor unit. In case of a reference design without image, block
Intensity Correction is replaced by a test pattern generator.

The basic video processor unit corrects video signal gain using a look-up table. The look-up
table also converts input 10 bit pixel data width to 8 bits. The 8 bit pixel data with corrected
intensity can be used for video processing and then it is sent out to the memory controller.
Interfacing to the CPU and basic video register set is provided using its dedicated block.
The image processing block is empty in the reference design. When additional image processing
is required, this block must be replaced by the processing algorithm. This module must use
input and output signals listed in Table 16. Direction of the signals is shown from perspective of
the image processing module. The width is stated in bits.

Signal Width Dir. Description
lut_frame 1 in Frame valid from the image sensor
lut_line 1 in Line valid from the image sensor
lut_strobe 1 in LED strobe output of the sensor
lut_data 8 in Pixel data from the look-up table
proc_frame 1 out Processor frame valid
proc_line 1 out Processor line valid
proc_data 8 out Processed pixel data

Table 16: LUT output signals useful for custom image processing

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 21 of 24

Figure 3: Block diagram of the video processor

Image
Processing

Intensity
Correction

and Bit Width
Reduction LUT

CPU Interface
and Register Set

Image
Sensor

Memory
Controller10 8 8

CPU

Memory
Interface 8

CPU Interface
The CPU interface contains set of registers required for basic GigE Vision camera. Additionally
it allows access to the input look-up table from the CPU software. The example firmware
provides a way how to access these registers from a GigE Vision application running at a PC. It
maps the video registers to the manufacturer-specific register space of the GigE Vision
application allowing the application accessing them. Table 17 shows list of video registers
provided by the reference design. In case of pattern generator, this varies slightly.

GigE Application Firmware Name Bits Description
Address Acc. Offset Acc.

0x0000A000 r/w 0x0000 r/w gcsr 31..0 Global video control and status
register; see below for details

0x0000A004 r/w 0x0004 r/w width 11..0 Image frame width in pixels;
allowed values are from 1 to
max_width

0x0000A008 r/w 0x0008 r/w height 11..0 Image frame height in lines;
allowed values are from 1 to
max_height

0x0000A00C r/w 0x000C r/w offs_x 11..0 Horizontal offset of the AOI; it
must be in range from 0 to
(max_width - 1)

0x0000A010 r/w 0x0010 r/w offs_y 11..0 Vertical offset of the AOI; it must
be in range from 0 to
(max_height - 1)

0x0000A014 r 0x0014 r/w padding 31..0 Line and frame padding in bytes;
see below for details

0x0000A018 r 0x0018 r/w pixfmt 31..0 Pixel format according to the
GigE Vision Specification

0x0000A01C r – – max_width 31..0 Maximum image width of the
image sensor

0x0000A020 r – – max_height 31..0 Maximum image height of the
image sensor

0x0000A024 r – – total_bpf 31..0 Total number of data bytes
transferred for each image frame

0x0000A028 r/w – – acq_mode 31..0 Current acquisition mode; the
reference design supports
continuous mode (1) only

0x0000A02C
:

0x000197FF

– – Not used

0x00019800
:

0x00019FFF

r/w – – lut 512
×

31..0

Video input look-up table; only
first 256 dwords are used for the
LUT

Table 17: Video processor CPU registers

There are two address and access type columns in Table 17. The GigE Application columns are
related to the GigE Vision application running at a PC. The Firmware columns are valid for the
firmware running in the embedded CPU of the reference design. The firmware offset means
relative offset of the register address according to the EPC interface base address. Actual
address of a video register is then

address=baseoffset

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 22 of 24

where the base is typically XPAR_EPC_x_PRHy_BASEADDR defined in the xparameters.h
header file. The EPC_x part is the name of the EPC instance in Xilinx Platform Studio and the y
part is actual video processor peripheral number.

GCSR Register Bits
This is the global video control and status register. Description of its particular bits is shown in
Table 18.

Bit(s) Name Access Default Description
31 acquisition r/w 0 Video acquisition control; setting this

bit to 1 starts continuous video
acquisition, resetting it to 0 stops the
acquisition

30..1 Not used
0 endianness r/w 0 LUT access data endianness; 0 means

big-endian, 1 stands for little-endian

Table 18: Video gcsr register bits

Padding Register Bits
This register sets the padding information of the GVSP leader packet. It is read-only for the
GigE Vision application. Description of its particular bits is shown in Table 19.

Bit(s) Name Access Default Description
31..16 line_pad r/w 0x0000 Number of insignificant bytes placed at

the end of each video line as padding
15..0 frame_pad r/w 0x0000 Number of insignificant bytes placed at

the end of each video frame as padding

Table 19: Video padding register bits

The reference design does not need line padding and therefore the line_pad is kept zero. The
frame_pad value depends on number of pixels per frame. Reference design firmware has a
function to calculate correct padding values, dependent on framebuffer mode.

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 23 of 24

Revision History

Date Version Revision
2008-03-17 0.0.1 Initial draft of the document
2008-03-20 0.0.2 Extended draft
2008-03-26 0.0.3 Added description of the video processor
2008-04-01 0.0.4 Added flash memory map, description of the parameters

EEPROM, and extended list of the bootloader commands
2008-04-02 0.0.5 Hyperlinks in table of contents
2008-04-09 0.0.6 Added GigE Vision registers section, updated resource

consumption table
2008-04-15 0.0.7 Changes related to completely different eeprom.pl script
2008-04-24 0.0.8 Updated FPGA resources consumption
2008-05-05 0.0.9 Extended command line arguments of the eeprom.pl script
2008-05-22 0.0.10 Added bootloader “Evaluation” command
2009-01-23 0.1.0 Added remote access to the configuration EEPROM, new

command line option of the eeprom.pl script, updated
description of the delivered archive and firmware

2009-04-09 X-1.0 Final release of the Xilinx version
2009-05-18 X-1.0.1 Updated boot flash memory allocation table
2009-05-26 X-1.0.2 Added description of the bootloader status outputs
2009-07-23 X-1.0.3 Corrected specification of the supply voltage range
2009-12-02 X-1.0.4 Few minor corrections and modifications
2011-03-28 X-1.1.0 Update to MPMC based reference design
2012-11-27 X-1.1.1 Update for S3ADSP/SP605 Board Referencedesign (ISE12)
2012-11-30 X-1.1.2 Update for ISE13/14 with SDK for software develoment

GigE Vision Reference Design, Document Revision X-1.1.2, 2012-11-30 Page 24 of 24

	Terms and Abbreviations
	Overview
	Structure of the Design
	Basic Operation
	Delivered Archive

	Hardware
	Main Board
	Connectors

	Expansion Board
	FPGA

	Firmware
	SDK
	Hardware Platform Specification
	Boards Support Package
	Application

	Makefile
	Command Shell Environment and GNU Make
	Makefile Targets

	Bootloader
	Commands
	Boot Flash Memory
	Parameters EEPROM

	Standalone Operation
	User Application and GigE Library
	GigE Vision Registers
	Remote Access to the SPI Flash Memory
	Remote Access to the Configuration EEPROM

	Video Processor
	CPU Interface
	GCSR Register Bits
	Padding Register Bits

	Revision History

